If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2-140.2+150=0
We add all the numbers together, and all the variables
-4.9t^2+9.8=0
a = -4.9; b = 0; c = +9.8;
Δ = b2-4ac
Δ = 02-4·(-4.9)·9.8
Δ = 192.08
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{192.08}}{2*-4.9}=\frac{0-\sqrt{192.08}}{-9.8} =-\frac{\sqrt{}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{192.08}}{2*-4.9}=\frac{0+\sqrt{192.08}}{-9.8} =\frac{\sqrt{}}{-9.8} $
| 5x^+32=7x^ | | (180-18x)+(9x+17)=116 | | 3/2x-+2/3x=13 | | 1/3x-9=9 | | 2x-5(x-3)=-9+3x-6 | | (2/3)^(3x-2)=243/32 | | r+5+3=15 | | 4*(n+7)=n-44 | | 1/3d+8=1/6d-2= | | 4(x-5)(x-1)=x-1 | | X+8x+4x+(x+8x+18)=200 | | -4.5t^2+9.8t+150=0 | | 2(x²-4)=-6x²+1 | | .5x-10=27 | | (10x-32)+(9x-12)=127 | | 6(x+2)^4-11(x+2)^2=-4 | | X2+x+56=0 | | (1/x)+1=x^2 | | 3x−43+2−3x2=1−x4 | | 8m-4-6=6 | | 6x+50=-115-9x | | -7x-8=9+6(x+6) | | t=-80+5t | | -7x-8=9+6(x+6)- | | (2/3x)=x | | -4.9t^2+9.8t+150=0 | | 3x-7/5=7 | | y+84=14 | | 4x+3x+2=2x+36 | | 7q+4=21 | | (4x-8)+(6x-24)=48 | | -12=0.5k-7.5 |